In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles.

نویسندگان

  • Ji Sun Park
  • Han Na Yang
  • Dae Gyun Woo
  • Hyung-Min Chung
  • Keun-Hong Park
چکیده

The effects of growth factor loaded in nanoparticles mixed in fibrin constructs on chondrogenic differentiation were investigated by evaluating the specific cartilage extracellular matrix components in vitro and in vivo using a special cell source of bone marrow-derived stromal cells (BMSCs). The proliferation of cultured and transplanted BMSCs was found to be greater in fibrin constructs that contained TGF-beta3-loaded nanoparticles and TGF-beta3 alone than in constructs that contained unloaded nanoparticles or in fibrin hydrogel alone. Further, reverse transcriptase-polymerase chain reaction revealed that BMSCs cultured in the presence of TGF-beta3 in vitro and in vivo expressed high levels of aggrecan, cartilage oligomer matrix protein, SOX9, and type II collagen. However, a decrease in type I collagen expression was observed from 1 to 4 weeks in the presence of TGF-beta3. Moreover, histological and immunohistochemical assays revealed that large amounts of type II and proteoglycan were released from BMSCs embedded in fibrin constructs, while decreased levels of collagen type I were observed in BMSCs cultured in constructs that contained nanoparticles that were loaded with TGF-beta both in vitro and in vivo. These findings indicate that use of fibrin constructs that contained BMSCs and were provided with sustained levels of growth factors for a long period of time enabled the formation of hyaline cartilage tissue in vitro and in vivo. Overall, these results indicate that the system evaluated here may be useful for minimally invasive transplantation, BMSC differentiation, and engineering of composite tissue structures with multiple cellular phenotypes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magneto-mechanical Stimulation of Bone Marrow Mesenchymal Stromal Cells for Chondrogenic Differentiation Studies

Mechanical interaction of cells and their surroundings are prominent in mechanically active tissues such as cartilage. Chondrocytes regulate their growth, matrix synthesis, metabolism, and differentiation in response to mechanical loadings. Cells sense and respond to applied physical forces through mechanosensors such as integrin receptors. Herein, we examine the role of mechanical stimulation ...

متن کامل

Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...

متن کامل

Bone marrow stromal cells and their application in neural injuries

Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...

متن کامل

Simvastatin combined with bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis through SDF-1α/CXCR4 pathway

Objective(s): Chemokines are wound mediators that promote angiogenesis during wound healing. We hypothesized that Simvastatin in combination with the bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis via SDF-1α/CXCR4 pathway.Materials and Methods: Under general anesthesia, deep partial-...

متن کامل

Experimental study on healing of long bone defects treated with fibrin membrane enriched with platelet growth factors and periosteal mesenchymal stem cells in rabbit: radiographical and histopathological evaluations

The present study was designed to evaluate the effects of platelet growth factors and periosteal mesenchymal stem cells on bone healing process, radiographically. Forty male White New Zealand rabbits in five equal groups were used in this study. A 2 mm full thickness bone defect was made in left radial bone of each animal. In group A (control) the defect was left with no medical intervention. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 2009